Biophysical model for gamma rhythms in the olfactory bulb via subthreshold oscillations.
نویسندگان
چکیده
Gamma oscillations in the olfactory bulb can be produced as an interaction of subthreshold oscillations (STOs) in the mitral cells (MCs) with inhibitory granule cells (GCs). The mechanism does not require that the GCs spike, and we work in a regime in which the MCs fire at rates lower than the fast gamma rhythm they create. The frequency of the network is that of the STOs, allowing the gamma to be modulated in amplitude with only small changes in frequency. Gamma oscillations could also be obtained with spiking GCs, but only for GCs firing close to population rate. Our mechanism differs from the more standard description of the gamma oscillation, in which the the decay time of the inhibitory cells is critical to the frequency of the network.
منابع مشابه
Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle.
Gamma (∼40-90 Hz) and beta (∼15-40 Hz) oscillations and their associated neuronal assemblies are key features of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch between these different regimes in most sensory systems remain misunderstood. Based on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we prop...
متن کاملInterplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb.
Olfactory stimuli have been known for a long time to elicit oscillations in olfactory brain areas. In the olfactory bulb (OB), odors trigger synchronous oscillatory activity that is believed to arise from the coherent and rhythmic discharges of large numbers of neurons. These oscillations are known to take part in encoding of sensory information before their transfer to higher subcortical and c...
متن کاملBeta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?
Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, ol...
متن کاملCircuit properties generating gamma oscillations in a network model of the olfactory bulb.
The study of the neural basis of olfaction is important both for understanding the sense of smell and for understanding the mechanisms of neural computation. In the olfactory bulb (OB), the spatial patterning of both sensory inputs and synaptic interactions is crucial for processing odor information, although this patterning alone is not sufficient. Recent studies have suggested that representa...
متن کاملSniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states.
Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two types of projection neurons, tufted cells and mitral cells, which differ in signal timing and firing frequency in response to odor inhalation. Whereas tufted cells respond with early-onset high-frequency burst discharges starting at the middle of the inhalation phase of sniff, mitral cells show odor responses ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 51 شماره
صفحات -
تاریخ انتشار 2009